
Connecting Identity.

Transforming Digital Business.

Best Practices for API

Protection with OAuth 2.0

S E C U R I T Y , I D E N T I T Y & A U T H O R I S A T I O N F O R

T H E A P I E C O N O M Y

Contents 1. Introduction 3
2. Terminology 3
3. Resource server and protected API 4

 - 3.1 Access token generation 5
 - 3.2 API request and token validation 5

4. Authorisation and authentication protocols 7
- 4.1 Password grant 7
- 4.2 Authorisation code 9
- 4.3 Client Initiated Backchannel Authentication (CIBA) 12
- 4.4 Refresh token 15

5. A comparison of OAuth 2.0 and API keys 16
- 5.1 Migrating from API keys to OAuth 2 17

6. Conclusions 18
7. References 18

2

1. Introduction APIs are now the standard entry point to the majority of newly created ‘back-end’

functionality. These APIs exist to provide not only a standardised, structured

way to access the required features or functions, but also to act as ‘gatekeepers’,

ensuring appropriate security, auditing, accounting etc.

Security is always underpinned by identity and as such APIs need to know, if not

who is accessing them, what is the context in which they are being accessed.

A variety of techniques of passing either authentication or authorisation

data have been used over the years - from additional username/password

parameters, to API keys, to full blown OAuth 2.0 based token support.

This whitepaper looks at the background to OAuth 2.0 API protection, , alongside

best practices and seeks to dispel some of the complexity and the myths that still

surround this approach.

We take the view of the API writer (the ‘Resource Server’). Future blogs and white

papers will explore the work required in other actors within the eco-system.

2. Terminology Term Description

Resource

Owner

An entity capable of granting access to a protected resource.

In the context of this document, the end user who uses a

client to access a protected API.

Resource

Server

The server hosting the protected resources. In the context of

this document this means the API in question, running on a

‘web’ server.

Client An application making protected resource requests on

behalf of the resource owner and with its authorisation.

‘Application’ may be a web application, mobile application,

command line script etc. that invokes the protected API.

Authorisation

Server

The server issuing access tokens to the client after

successfully authenticating the resource owner and

obtaining authorisation.

3

Note that these roles are not restricted to a single role per application. In fact,

it is common for real world applications to simultaneously act in many roles.

For example, an OAuth 2.0 authorisation server often acts in both Authorisation

Server and Resource Server roles, and a web application acts in both Client and

Resource Server roles.

3. RESOURCE
SERVER AND
PROTECTED API

This chapter details what a Resource Server needs to implement in order to

protect an API with OAuth 2.0.

From the Resource Server’s perspective, hosting a protected API is very simple.

Each API request from a Client will contain an access token. The Resource Server

will validate this access token with the Authorisation Server using a well defined

introspection service, provided by the Authorisation Server.

The Resource Owner in collaboration with the Client must generate the required

access token, and this is performed using the normal OAuth 2.0 flows for

authorisation.

The outline of these two basic steps is shown below:

Authentication and Authorisation

Resource

Owner
Client

Resource

Server

Authorisation

Server

Token Request

API Request Validation ResponseCompleted

API Request Token Validation1 2

34

Interaction with Client Token Request

Diagram: OAuth 2.0 and API

4

3 . 1 A C C E S S T O K E N G E N E R AT I O N

In the above diagram, the ‘Authentication and Authorisation’ part is simplified,

and it is assumed that the Token response message contains an access token

for the Client. Different protocols for a Client to get access tokens from an

Authorisation server will be presented later in this document.

What is important to understand is that the abstraction of Client, Resource

Server and Authorisation Server roles allows the Resource Server to be

completely unaware of how a Client gets its access token. This abstraction

greatly simplifies the implementation of the Resource Server. Different end users

with different clients may all use different authorisation and authentication

protocols, and these protocols may evolve with time without any modifications

needed to the Resource Server implementation.

3 . 2 A P I R E Q U E S T A N D T O K E N VA L I D AT I O N

1 — A P I R E Q U E S T

The syntax of API request is entirely specified by the application and the API.

Best practice for OAuth 2.0 is that the Client puts the access token in the HTTP

standard Authorisation header using the “Bearer” scheme. OAuth 2.0 puts no

other restrictions on parameters, body, content types or other parts of the

request.

Below are two API request examples. The first one is “RESTful” with JSON

formatted content, and the second is “Web Services” style with SOAP encoding.

RESTful API request SOAP API request

POST /api

Authorisation: Bearer

179c8216e1a0

Content-Type: application/

json

{

 “message”:”hello server”

}

POST /api

Authorisation: Bearer

179c8216e1a0

Content-Type: application/

soap+xml

<soap:Envelope>

 <soap:Body>

 <message>hello server</

message>

 </soap:Body>

</soap:Envelope>

5

2 — T O K E N VA L I D AT I O N

When processing an API request the Resource Server will read the access

token from the Authorisation header, and sends the token to the introspection

endpoint of the Authorisation Server for validation. The Resource Server must

previously have registered an identity with the OAuth 2.0 authorisation server.

The introspection request is authenticated with credentials registered for the

Resource Server. The example below is using the HTTP Basic authentication

protocol.

Request parameters

 ǻ token - the access token received with the API request

Introspection request to the Authorisation Server

POST /introspection

Authorisation: Basic cmVzb3VyY2VzZXJ2ZXI6c2VjcmV0

Content-Type: application/x-www-form-urlencoded

token=179c8216e1a0

3 — VA L I D AT I O N R E S P O N S E

If the Authorisation Server considers the token valid for the entity making

the request, then the validation response will contain a parameter named

“active” with boolean value “true”. This is the only mandatory parameter of an

introspection response.

Response parameters

 ǻ active = true - indicates token is valid for the entity that made the

introspection request

Depending on the features and configuration of the OAuth 2.0 Authorisation

Server, the response will often contain other parameters and claims including:

 ǻ scope - what scopes resource owner granted to client, useful for API request

authorisation

 ǻ sub - machine readable identifier of resource owner, useful for API request

auditing and authorisation

 ǻ exp - timestamp indicating time when this token is expected to expire, useful

if resource server wants to keep a cache of validation responses

 ǻ other parameters and claims such as role, organisation, etc. that may be

useful for authorisation or other logic implemented by the API

6

Introspection response from the Authorisation Server

HTTP/1.1 200 OK

Content-Type: application/json

{

 “active”:true,

 “scope”:”api”,

 “sub”:”user@example.com”,

 “exp”:1514764800

}

4 — A P I R E S P O N S E

As with the originating API request, the syntax and contents of the API response

are entirely specified by the application. OAuth 2.0 puts no restrictions on body,

content types or other parts of the response.

RESTful response SOAP response

HTTP/1.1 200 OK

Content-Type: application/

json

{

 “message”:”hello client”

}

HTTP/1.1 200 OK

Content-Type: application/

soap+xml

<soap:Envelope>

 <soap:Body>

 <message>hello client</

message>

 </soap:Body>

</soap:Envelope>

4. AUTHORISATION
AND
AUTHENTICATION
PROTOCOLS

This chapter presents some protocols the Client may use to get access tokens

from an Authorisation server.

4 . 1 PA S S W O R D G R A N T

Password grant is the simplest protocol for getting an access token from an

Authorisation server. However, there are a number of serious security issues

with this protocol that need to be considered.

7

 ǻ Your username and password are disclosed to the Client.

If the Client is a random application downloaded from the app store or a web

application hosted by a third party then this is a potential security issue.

This is less of a problem if the Client is provided by the same organisation as

the OAuth 2.0 provider, or if the client is, for example, a command line script

or other trusted tool that you are running in a trusted environment.

 ǻ Privilege escalation because there is no authorisation.

There is no way to control the scope of access tokens the Client is requesting

from the OAuth 2.0 authorisation server.

If the Client is not trustworthy it could easily request access tokens with a

much wider scope than what was intended.

 ǻ Your application becomes limited to a username and password

authentication mechanism.

Two-factor authentication mechanisms are out of scope when using

password grant protocol.

See OAuth 2.0 Threat Model and Security Considerations for more details.

The diagram below outlines the flow for Password grant:

Resource

Owner
Client

Authorisation

Server

Token Response
Access Token

Completed 2

Diagram: OAUth 2.0 resource owner

Token Request
username &

password
1Interaction with Client

username & password

8

1 — T O K E N R E Q U E S T W I T H PA S S W O R D G R A N T

Request parameters

 ǻ grant_type = password - indicates password grant protocol is being used

 ǻ scope - list scopes requested by client

 ǻ username - Resource owner username password - Resource owner password

Password grant request

POST /token

Authorisation: Basic Y2xpZW50OnNlY3JldA==

Content-Type: application/x-www-form-urlencoded

grant_type=password&scope=api&username=user@example.

com&password=c04ab498d645

2 — T O K E N R E S P O N S E

Response parameters

 ǻ token_type = Bearer - indicates access token is present in response

 ǻ access_token - the access token

 ǻ expires_in - indicates token expiry time, after which client should assume

access token has expired

 ǻ scope - list of scopes granted to client

Password grant response

HTTP/1.1 200 OK

Content-Type: application/json

{

 “token_type”:”Bearer”,

 “access_token”:”179c8216e1a0”,

 “expires_in”:3600,

 “scope”:”api”

}

4 . 2 A U T H O R I S AT I O N C O D E

The authorisation code grant protocol requires the Resource Owner to use a

user agent, such as a web browser.

The authorisation code protocol solves the security issues of the password grant

protocol because Resource Owner authentication and authorisation happen

9

within a web browser. No credentials or other confidential information are

disclosed to the Client.

Because there is a web browser involved, almost any authentication mechanism

is possible.

In addition to web applications, this protocol is also suitable for mobile and

desktop applications. A common method in these use cases is where the Client

launches the platform’s native web browser and starts a very simple localhost

web server to capture the Authorisation response.

Resource

Owner
Client

User

Agent

1

Navigate to Client

Diagram: OAuth authorisation code grant

Authorisation

Server

User interaction
authorise

authentication
request

Completed

2 3

4

GET/Client

Authorisation
request redirect

Authorisation
response

authorisation code

Authorised

Token request
authorisation code

Token response
access code

Authorisation request

Authenticate end user and get authorisation

Authorisation response redirect
authorisation code

1 0

1 — A U T H O R I S AT I O N R E Q U E S T

Request parameters

 ǻ response_type = code

 ǻ client_id - client registration identifier

 ǻ redirect_uri - redirect uri registered for client

 ǻ scope - list scopes requested by client

Authorisation code grant request

GET /authorisation?client_id=client&response_type=code&

redirect_uri=http://localhost:29634/redirect&scope=api

2 — A U T H O R I S AT I O N R E D I R E C T

Authorisation response is not a direct request from the Authorisation server to

the Client. Instead the Authorisation server uses the User agent as intermediary

when sending the authorisation code to the Client.

Request parameters

 ǻ code - authorisation code received from authorisation server

Authorisation response

GET /redirect?code=f2889c08f94e

3 — T O K E N R E Q U E S T W I T H A U T H O R I S AT I O N C O D E

Request parameters

 ǻ grant_type = authorisation_code

 ǻ redirect_uri - redirect uri registered for client

 ǻ code - authorisation code received from authorisation server

Token request

POST /token

Authorisation: Basic Y2xpZW50OnNlY3JldA==

Content-Type: application/x-www-form-urlencoded

grant_type=authorisation_code&code=f2889c08f94e&redirect_

uri=http://localhost:29634/redirect

1 1

4 — T O K E N R E S P O N S E

Response parameters

 ǻ token_type = Bearer - indicates access token is present in response

 ǻ access_token - the access token

 ǻ expires_in - indicates token expiry time, after which client should assume

access token has expired

 ǻ scope - list of scopes granted to client

Token response

HTTP/1.1 200 OK

Content-Type: application/json

{

 “token_type”:”Bearer”,

 “access_token”:”179c8216e1a0”,

 “expires_in”:3600,

 “scope”:”api”

}

4 . 3 C L I E N T I N I T I AT E D B A C K C H A N N E L A U T H E N T I C AT I O N (C I B A)

The CIBA protocol enables the use of an ‘out of band’ authentication mechanism.

Often the Authentication device will be software running on a mobile device such

as a mobile phone, but other solutions are also possible.

CIBA also solves issues with the password grant protocol because no confidential

information is disclosed to the Client.

The authentication device can implement any suitable authentication mechanism.

Ranging from simple “click ok” schemes to highly secure mechanisms with

biometric verification.

This protocol is suitable for the widest range of applications. In addition to web,

mobile and desktop applications, this protocol works with use cases with very

limited user interfaces such as call centres, petrol pumps, etc.

The diagram below outlines the CIBA flow:

1 2

Diagram: Client Initiated Backchannel Authentication

Resource

Owner
Client

Authentication

Device

User interaction
authorise

authentication
request

Completed

Authentication response

Authorisation

Server

Interaction with Client
username

Authorisation
request

username

Authentication
response

transaction ID

Authorisation request to
authentication device

Token request
transation ID

Token response
access token

3

4

1

2

1 — A U T H E N T I C AT I O N R E Q U E S T

Request parameters

 ǻ login_hint - username, mobile phone number or other identifier that allows

authorisation server reach authentication device of Resource owner

 ǻ scope - list scopes requested by client

Authentication request

POST /bc-authorize

Authorisation: Basic Y2xpZW50OnNlY3JldA==

Content-Type: application/x-www-form-urlencoded

login_hint=5551234&scope=api

1 3

2 — A U T H E N T I C AT I O N R E S P O N S E

Response parameters

 ǻ auth_req_id - authentication transaction identifier

Authentication response

HTTP/1.1 200 OK

Content-Type: application/json

{

 “auth_req_id”:”450ab58cafe5”

}

3 — T O K E N R E Q U E S T W I T H T R A N S A C T I O N I D

Request parameters

 ǻ grant_type = urn:openid:params:modrna:grant type:backchannel_request

 ǻ auth_req_id - authentication transaction identifier

Token request

POST /token

Authorisation: Basic Y2xpZW50OnNlY3JldA==

Content-Type: application/x-www-form-urlencoded

grant_type=urn:openid:params:modrna:grant type:backchannel_

request&auth_req_id=450ab58cafe5

4 — T O K E N R E S P O N S E - P O L L I N G

Response parameters

 ǻ error = authorisation_pending - indicates Authorisation server is still waiting

for interaction from Resource owner

Token response (failed poll)

HTTP/1.1 200 OK

Content-Type: application/json

{

 “error”:”authorisation_pending”

}

1 4

5 — T O K E N R E S P O N S E

Response parameters

 ǻ token_type = Bearer - indicates access token is present in response

 ǻ access_token - the access token

 ǻ expires_in - indicates token expiry time, after which client should assume

access token has expired

 ǻ scope - list of scopes granted to client

Token response (successful)

HTTP/1.1 200 OK

Content-Type: application/json

{

 “token_type”:”Bearer”,

 “access_token”:”179c8216e1a0”,

 “expires_in”:3600,

 “scope”:”api”

}

4 . 4 R E F R E S H T O K E N

The access token allows the client to make requests of the API for a determined

length of time. If the Resource Owner wishes to allow the client to continually

access for a long time, a security issue exists where the access token, once

created, will be usable for that period without further authentication requests.

The use of such a long running token would be considered bad practice. To

solve this issue, the Authorisation Server can provide not only an access token,

but also a refresh token. The access token will have a ‘short’ expiry time, but

the refresh token will have a long expiry time. When the access token expires

the client can use the refresh token to generate a new access token, but this

re-issuance by the Authorisation Server enables any changes to be included

(underlying account changes, authorisation changes etc.).

Client
Authorisation

Server

Diagram: OAuth 2.0

Token request

Token response
access token

1

2

1 5

1 — T O K E N R E Q U E S T W I T H R E F R E S H T O K E N

Request parameters

 ǻ grant_type = refresh_token

 ǻ refresh_token - refresh token is an optional parameter of the Token response

Token request

POST /token

Authorisation: Basic Y2xpZW50OnNlY3JldA==

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=cd51acb1b04a

2 — T O K E N R E S P O N S E

Response parameters

 ǻ token_type = Bearer - indicates access token is present in response

 ǻ access_token - the access token

 ǻ expires_in - indicates token expiry time, after which client should assume

access token has expired

 ǻ scope - list of scopes granted to client

Token response

HTTP/1.1 200 OK

Content-Type: application/json

{

 “token_type”:”Bearer”,

 “access_token”:”179c8216e1a0”,

 “expires_in”:3600,

 “scope”:”api”

}

5. A COMPARISON
OF OAUTH 2.0
AND API KEYS

The pre-cursor to OAuth for APIs has been the use of API keys, and such API

key methods are still in common use today. Advocates of API key approaches

emphasise simplicity of API keys over the complexity of OAuth 2.0. OAuth

2.0 based solutions bring the advantage of standardisation, and the ability to

completely decouple authentication/authorisation from API usage.

The purpose of this comparison is to show that OAuth 2.0 is scalable. It may be

as simple as any API keys approach, and it is very easy to build an application

that scales from the simple API keys style approach to the full OAuth 2.0 suite.

1 6

Area API Keys OAuth 2.0 access token

Token differences Lifetime of API keys often unlimited which

makes approach attractive for headless

server-to-server approaches

Lifetime of access token often limited - need

to use saved credentials or refresh tokens for

headless server-to-server approaches

Ease of use - often there exists an easy to use

tool or user interface for generating API keys

Ease of use varies - some protocols for

getting access tokens are very simple, others

are more complex

Authorisation Server Equivalent mechanism required, both to

generate and initiate (lifetime) key and to

validate presented key on API call.

OAuth 2.0 requirement - provides services to

generate and validate access tokens

Client API key is the token and is ready to use for

the client

Client must first request an access token

using some dynamic mechanism before it can

be used

Resource Server Must validate the API key on presentation Must validate the access token on

presentation

Although there are differences between the two mechanisms, at a high level, and

without considering key/token generation, the usage is very similar.

5 . 1 M I G R AT I N G F R O M A P I K E Y S T O O A U T H 2

The work required to migrate an API key based platform to an OAuth 2.0 based

platform is quite minimal.

 ǻ Put API key in HTTP standard Authorisation header using “Bearer” scheme

 ǻ Publish OAuth 2.0 compatible introspection service for validating API keys

This way your API application will be OAuth 2.0 ready.

The existing key management system will have to be exposed to enable access

tokens to be created (wrapping existing key meaning). However this can be

achieved by a number of off-the-shelf components, such as Ubisecure’s Identity

Server.

1 7

6. CONCLUSION Creating a new API server (Resource Server) in an OAuth 2.0 compliant manner

is, as has been shown, simple and no more effort than an older API key base

manner. More over, using an OAuth 2.0 based authorisation strategy provides

significantly more flexibility and security than API keys.

Migrating an existing API service to OAuth 2.0 authorisation is simple and quick

and brings many additional security and operational benefits.

7. REFERENCES https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6750

https://tools.ietf.org/html/rfc7235

https://tools.ietf.org/html/rfc7662

http://openid.net/specs/openid-connect-modrna-client-initiated-

backchannel-authentication-1_0.html

https://en.wikipedia.org/wiki/Application_programming_interface_key

API Protection with OAuth 2.0 authored by

Petteri Stenius

Principle Scientist, Ubisecure

1 8

About Ubisecure Ubisecure is a pioneering European b2b and b2c Customer Identity & Access

Management (CIAM) software provider and cloud identity services enabler

dedicated to helping its customers realise the true potential of digital business.

Ubisecure provides a powerful Identity Platform to connect customer digital

identities with customer-facing SaaS and enterprise applications in the cloud

and on-premise. The platform consists of productised CIAM middleware and

API tooling to help connect and enrich strong identity profiles; manage identity

usage, authorisation and progressive authentication policies; secure and

consolidate identity, privacy and consent data; and streamline identity based

workflows and decision delegations. Uniquely, Ubisecure’s Identity Platform

connects digital services and Identity Providers, such as social networks, mobile

networks, banks and governments, to allow Service Providers to use rich, verified

identities to create frictionless login, registration and customer engagement

while improving privacy and consent around personal data sharing to meet

requirements such as GDPR and PSD2.

Ubisecure is accredited by the Global Legal Entity Identifier Foundation (GLEIF) to

issue Legal Entity Identifiers (LEI) under its RapidLEI brand, a cloud-based service

that automates the LEI lifecycle to deliver LEIs quickly and easily. The company

has offices in London and Finland.

www.ubisecure.com
sales@ubisecure.com

