
SAML vs OAUTH 2.0 vs

OPENID CONNECT

U n d e r s t a n d i n g t h e d i f f e r e n c e s b e t w e e n t h e

t h r e e m o s t c o m m o n a u t h o r i s a t i o n p r o t o c o l s

Connecting Identity.

Transforming Digital Business.

Contents Introduction 3
- History 3

Acronyms & Terminology 4
 - Web Single Sign-On 4
 - Applications and Protected APIs 4
 - Acronyms 5

Authorisation Protocols 5
- OpenID 2.0 5
- OAuth 2.0 6
- SAML 2.0 8
- OAuth 2.0 Extensibility 9
- OpenID Connect 1.0 9

Security Considerations 11
- SAML 11
- OAuth 2.0 and OpenID Connect 1.0 12

Comparing the Protocols 13
Conclusions 14

2

Introduction

2 0 0 2

SAML 1.0

2 0 0 3

SAML 1.1

2 0 0 7

OpenID 2.0

2 0 0 5

SAML 2.0

2 0 1 2

OAuth 2.0

2 0 1 4

OpenID Connect 1.0

2 0 1 0

OAuth 1.0

2 0 0 6

OpenID 1.0

T
he world of Identity and Access Management is ruled by two things -

acronyms and standards.

In our popular blog post at https://www.ubisecure.com/uncategorized/

difference-between-saml-and-oauth/ we compared the two most common

authorisation protocols - SAML2 and OAuth 2.0. This white paper extends that

comparison with the inclusion of a third protocol, OpenID Connect. We also

touch on the now obsolete OpenID 2.0 protocol.

H I S T O RY

Before diving into the details, it is useful to understand the order of emergence

of the various protocols. It helps follow the evolution that gave rise to OpenID

Connect.

3

https://www.ubisecure.com/uncategorized/difference-between-saml-and-oauth/
https://www.ubisecure.com/uncategorized/difference-between-saml-and-oauth/

Acronyms &
Terminology

Party Term in

SAML

Term in

OAuth

Term in

OpenID

Web browser

that an end user

uses to access a

web application

User agent User agent User agent

Server that

owns the user

identities and

credentials

Identity Provider

(IDP, IdP)

Authorisation

Server (AS)

OpenID Provider

(OP)

Web application

that requires

permission

to proceed

or access a

resource

Service Provider

(SP)

Client Relying Party (RP)

or Client

Server that hosts

the resource

being accessed

Service Provider

(SP)

Resource Server Resource Server

Party Term in OAuth

Server that owns the user identities

and credentials

Authorisation Server (AS)

Application that wants to access a

protected API

Client

Protected API Resource Server (RS)

Let’s recap on the terminology that will be needed as we start looking at the

operation of the various protocols.

W E B S I N G L E S I G N - O N

A P P L I C AT I O N S A N D P R O T E C T E D A P I S

4

O P E N I D 2 . 0

OpenID was the first mainstream standard for authentication. It is, however, now

obsolete following the approval of OpenID Connect. OpenID 2.0 was widely used

and supported by most large internet companies.

OpenID provided user authentication and, with extensions in 2007, user

attributes.

Today when ‘OpenID’ is being talked about, it will almost always refer to OpenID

Connect 1.0.

SAML Security Assertion Markup Language

OAuth Open Authentication

OP OpenID Provider

SP Service Provider

RP Relying Party

AS Authorisation Server

HTTP Hypertext Transfer Protocol

OIDC OpenID Connect

SSO Single Sign On

CIAM Customer Identity and Access Management

XML Extensible Markup Language

API Application Program Interface

Authorisation
Protocols

A C R O N Y M S

5

The flow illustrated includes the following steps:

1.	 The client initiates the flow by directing the resource owner’s user agent

to the authorisation endpoint. The client includes its client identifier,

requested scope, local state, and a redirection URI to which the

authorisation server will send the user-agent back once access is granted (or

denied).

2.	 The authorisation server authenticates the resource owner (via the user-

agent) and establishes whether the resource owner grants or denies the

client’s access request.

3.	 Assuming the resource owner grants access, the authorisation server

redirects the user-agent back to the client using the redirection URI provided

earlier (in the request or during client registration). The redirection URI

includes an authorisation code and any local state provided by the client

earlier.

Resource

Owner
Client

User

Agent

Authorisation

Server

1

2

3

4

5

1

2

Client initiates by
directing User Agent to
authorisation endpoint

Authentication as
required

Authorisation code
returned to Client

Client requests
access token from

authorisation server

Authorisation server
validates the Client and

returns token

Authorisation server
authenticates the

resource owner using
appropriate method

O A U T H 2 . 0

6

4.	 The client requests an access token from the authorisation server’s token

endpoint by including the authorisation code received in the previous step.

When making the request, the client authenticates with the authorisation

server. The client includes the redirection URI used to obtain the

authorisation code for verification.

5.	 The authorisation server authenticates the client, validates the authorisation

code, and ensures that the redirection URI received matches the URI used to

redirect the client in step (C). If valid, the authorisation server responds back

with an access token and, optionally, a refresh token.

Authentication is all about the user in the context of the application, and a

network authentication protocol like OpenID is able to do this across networks

and security boundaries. An authentication protocols tells an application who

the current user is and whether or not the user is present. In addition, the

protocol will often return additional attributes, e.g. an e-mail address.

However, OAuth 2.0 tells the application none of those things. OAuth 2.0 tells it

absolutely nothing about the user’s identity, nor does it expose how the end user

proved their presence or even if the user is still present or not. An OAuth 2.0

client asked for a token, received a token, and used that token to access some

resource – for example, an API.

This delegated access, accessing a resource on the behalf of a user who may

not even be present, is one of the great points of OAuth 2.0 and great for client

authorisation. At the same time, it is very limited for authentication, where the

whole point is figuring who the user is, how the user’s identity was authenticated

and whether the user is present or not.

The authorisation code grant type is used to obtain both access tokens and

refresh tokens and is optimised for confidential clients. Since this is a redirection-

based flow, the client must be capable of interacting with the resource owner’s

user-agent (typically a web browser) and capable of receiving incoming requests

(via redirection) from the authorisation server.

Note: the lines illustrating steps 1, 2, and 3 are broken into two parts as they

pass through the user-agent.

7

User

Agent

Service

Provider

Identity

Provider

1

3

4

5

6

2

User Agent attempts to access
resource at Service Provider

<Response> message issued by Identity Provider to Service Provider

Based on the Identity Provider’s
response identifying (or not) the

Principle, the Service Provider
either returns the resource or

an (HTTP) error

<AuthnRequest> message
issued by Service Provider to

Identity Provider

Identity Provider identifies Principle (methods vary, detail not shown)

Service Provider determines Identity
Provider to use (methods vary, details

not shown)

Is there a security context for this UA? No,
so let’s establish one...

1.	 The Client attempts to access a secured resource via the User Agent, without

a security context.

2.	 The Service Provider obtains the location of an endpoint at an identity

provider for the authentication request protocol. The means by which this is

accomplished is implementation dependent.

3.	 The Service Provider issues an <AuthnRequest> message to be delivered by

the user agent to the Identity Provider.

4.	 The Identity Provider authenticates the Client using some (undefined)

method.

S A M L 2 . 0

We have seen that OpenID 2.0 provides authentication information, OAuth2

provides authorisation information. SAML2 provides all of this in the form

of assertions (be they authentication assertions, attribute assertions or

authorisation assertions).

8

5.	 The Identity Provider issues a <Response> message to be delivered by the

User Agent to the Service Provider. The message may indicate an error, or

will include (at least) an authentication assertion.

6.	 Having received the response from the Identity Provider, the Service

Provider can respond to the Client’s User Agent with its own error, or can

establish its own security context for the Clienty and return the requested

resource.

This flow is HTTP POST heavy, rending it only really useful for interactive web

sessions.

O A U T H 2 . 0 E X T E N S I B I L I T Y

Before jumping to OpenID Connect, it is useful to understand a little about

OAuth2 extensibility. As part of the specification work on OAuth2, the definition

was created with extensibility in mind. This extensibility allows new protocols to

be defined on top of the ‘basic’ OAuth2 protocol.

A number of extension protocols have been defined (for example UMA) and a

number more are in draft stages.

Of specific note here is OpenID Connect, a protocol built on top of OAuth2

to provide: “authentication built on top of OAuth 2.0 and the use of claims to

communicate information about the End-User”. ¹

1 http://openid.net/developers/specs/

O P E N I D C O N N E C T 1 . 0

OpenID Connect, or OIDC for short, layers on top of OAuth 2.0 to provide

authentication information, as well as authorisation information, through the

use of Claims.

Being based on OAuth2.0, OpenID Connect flow is very similar to OAuth 2.0 (as

seen below). The major difference is the addition of the ID Token.

9

http://openid.net/developers/specs/

1.	 The client prepares an Authentication Request containing the desired

request parameters.

2.	 The client sends the request to the Authorisation Server.

3.	 The Authorisation Server authenticates the end user.

4.	 The Authorisation Server obtains user consent/authorisation.

5.	 The Authorisation Server sends the user back to the client with an access

token and, if requested, an ID token.

6.	 The client requests a response using the Authorisation Code at the Token

endpoint.

7.	 The client receives a response that contains an ID Token and Access Token

in the response body.

8.	 The client validates the ID token and retrieves the subject identifier of the

user.

1

3

4

2

Resource

Owner
Client

Authorisation

Server

8

Authorisation Server
authenticates the end user

Authorisation Server obtains
consent/authorisation

Client initiates by directing User
Agent to authorisation endpoint

Client extracts subject identifier

Authorisation code
returned to Client

Authorisation server
validates the code and

returns token

Client sends request to
Authorisation Server

Client requests IDToken

7

5

6

1 0

Security
Considerations

Feature Details

Additional parameters When the Client makes a request to the IdP it

can pass additional parameters to the IdP, for

example language for the authentication UI,

and required authentication level.

Claims Claims are ‘name-value’ pairs that provide

attribute data about the user that has been

authenticated. The OpenID Connect standard

defines a number of standard Claims, for

example: given_name, family_name, picture,

email. In addition to the standard Claims,

‘additional claims’ can be defined.

ID Token The ID Token is built by the IdP and returned

to the Relying Party as the final part of the

basic authentication. This token contains a

number of authentication related claims and

may contain additional user related claims. The

token itself is in the form of a signed JSON Web

Token (JWT), and may, optionally, be encrypted.

An access token is also returned that can be

used by the Client to make further requests to

the IdP or a Resource Server.

The OpenID Connect standard introduces additional parameters to the request

and introduces the concepts of Claims and the ID Token.

S A M L

For SAML the most common and widely used protocol for securing message

exchange between an IdP and service provider is sending signed SAML Assertion

to the Service Provider using HTTP POST protocol. SAML uses XML Signature and

XML Encryption for end-to-end message integrity and encryption.

Key exchange in SAML happens either out of band or dynamically with SAML

Metadata.

Again, being based on OAuth 2.0 OpenID Connect is ‘API friendly’ and can be

used by web applications, desktop applications, mobile applications and devices.

1 1

See SAML V2.0 Implementation Profile for Federation Interoperability for

a recent requirement specification for an interoperable and secure SAML

implementation.

O A U T H 2 . 0 A N D O P E N I D C O N N E C T 1 . 0

OIDC defines different profiles for securing message exchange between an IdP

and a Relying Party.

The simplest model completely relies on security of DNS and TLS for integrity.

The benefit is a very low barrier of entry into integrating an application with

an OIDC IdP where the application designer only needs capability of invoking

a RESTful API of the OIDC IdP - no processing of digital signatures or other

cryptography is necessary.

By implementing signed and encrypted JWTs, the security of an OIDC

implementation is increased to the level of SAML with end-to-end message

integrity and encryption.

By using modern technologies such as Token Binding, security increases even

beyond what is possible with standards based interoperable SAML.

When signed and encrypted JWTs are used, key exchange in OIDC happens

either out of band or dynamically with OIDC Metadata.

Dynamic Client Registration Protocol enables a very dynamic and completely

automated management of Client identities at an OIDC IdP - very well suited for

IoT and Mobile Application use cases.

See OAuth 2.0 Threat Model and Security Considerations and OAuth 2.0 Security

Best Current Practice for recent instructions and best practices into creating

secure OAuth and OIDC integrations.

1 2

https://kantarainitiative.github.io/SAMLprofiles/fedinterop.html
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-07
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-06
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-06

Comparing the
Protocols

Firstly, OAuth 2.0 has a different purpose to both SAML 2.0 and OpenID Connect

1.0, OAuth is, at the base level, an authorisation protocol, whereas SAML and

OpenID Connect are authentication/authorisation protocols.

For access control, OAuth 2.0 provides a great solution.

SAML and OpenID Connect both provide authentication as well as authorisation.

SAML is definitely the more complex to implement. OpenID Connect, being

based on OAuth has a very low barrier to entry and can be scaled once working

(both security and feature wise).

If you are looking to join large existing federations then SAML will have the edge,

its age means many of the existing federations are SAML based (for example,

most university federations). Of course, it is possible to translate between

protocols. Doing this manually is a significant amount of work, but if you’re using

the Ubisecure Identity Server in an IdP Proxy role this is just a configuration

option, so it is possible to have a simple implementation of OpenID Connect

working with an existing SAML federation.

SAML is effectively constrained to browser operation, so for application or device

usage OpenID Connect will be the protocol of choice.

When it comes to security, OAuth, and hence OpenID Connect, provides a

flexible model which can scale. SAML benefits from being within the browser

and having a relatively fixed security model, but is also only as secure as the

browser. OAuth is dependent upon the TLS stack and, when incorporated in an

application, is only as good as the stack in the application. If the app is using

the OS implementation then it will be parallel to the browser. However, device

implementation will need to take care over stack selection and configuration.

1 3

The emergence and rapid growth of OpenID Connect is a physical manifestation

of the ongoing mobile transformation. As identity and access management has

split between the traditional enterprise SSO and external user centric CIAM,

so has the protocol stack underneath. OpenID Connect combines OAuth 2.0

authorisation with authentication, and allows building a user-friendly mobile

application “done right”.

An inevitable question is “Which of the protocols is the right for my use case?”

Making broad generalisations is one of the best ways to draw dissension from all

directions, but the below table does just that.

Conclusions

Protocol Best use cases

SAML Enterprise SSO, existing federations

OAuth 2.0 API authorisation, UMA

OpenID Connect Customer SSO, CIAM, mobile

If you are reading this to determine how to quantify, manage and reap the

benefits of CIAM in your organisation please contact Ubisecure – we can guide

you through the complexity and reduce your implementation time considerably.

www.ubisecure.com

sales-team@ubisecure.com

1 4

https://www.ubisecure.com/
mailto:sales-team%40ubisecure.com?subject=

About Ubisecure Ubisecure is a pioneering European b2b and b2c Customer Identity & Access

Management (CIAM) software provider and cloud identity services enabler

dedicated to helping its customers realise the true potential of digital business.

Ubisecure provides a powerful Identity Platform to connect customer digital

identities with customer-facing SaaS and enterprise applications in the cloud

and on-premise. The platform consists of productised CIAM middleware and

API tooling to help connect and enrich strong identity profiles; manage identity

usage, authorisation and progressive authentication policies; secure and

consolidate identity, privacy and consent data; and streamline identity based

workflows and decision delegations. Uniquely, Ubisecure’s Identity Platform

connects digital services and Identity Providers, such as social networks, mobile

networks, banks and governments, to allow Service Providers to use rich, verified

identities to create frictionless login, registration and customer engagement

while improving privacy and consent around personal data sharing to meet

requirements such as GDPR and PSD2.

Ubisecure is accredited by the Global Legal Entity Identifier Foundation (GLEIF) to

issue Legal Entity Identifiers (LEI) under its RapidLEI brand, a cloud-based service

that automates the LEI lifecycle to deliver LEIs quickly and easily. The company

has offices in London and Finland.

www.ubisecure.com
sales@ubisecure.com

